Technical Article

As the world advances toward a sustainable, greener future, many countries are powering down fossil-fuel energy generation in favor of renewables. The global weighted-average cost of electricity from new utility-scale solar photovoltaic (PV) projects fell by 85% between 2010 and 2020, onshore wind by 56%, and offshore wind by 48%. Renewables have thus become the typical route for energy capacity addition in nearly all countries and the Compound Annual Growth Rate (CAGR) of cumulative PV installations, including off-grid, reached 34% between 2010 and 2020.

This growth is set to continue with the added thrust toward increasing energy efficiency. An International Renewable Energy Agency (IRENA) report asserts that limiting global warming to 1.5°C would require cutting 36.9 Gt of annual carbon dioxide emissions and has recommended a target of an additional 444 GW/year of solar PV and 248 GW/year of wind energy until the year 2050. IRENA estimates that significant increases in renewable energy and energy efficiency can each contribute no less than 25% toward achieving the targeted emissions reduction, while another 20% can be reached through electrification of such applications as transport.

While research in new wind turbine designs and perovskite-based solar cells is pushing the limits of energy conversion efficiency, the power semiconductor chain between the generation to application of renewable energy need no longer be the weak link from the sun to the wheels. There are immense size, weight, power, and cost (SWaP-C) benefits available today from simply swapping out legacy semiconductor technology for Silicon Carbide in energy connection, distribution, and storage systems…